MOX–Report No. 19/2008 Robin-Robin preconditioned Krylov methods for fluid-structure interaction problems

نویسندگان

  • Santiago Badia
  • Fabio Nobile
  • Christian Vergara
چکیده

In this work we propose a Robin-Robin preconditioner combined with Krylov iterations for the solution of the interface system arising in fluid-structure interaction (FSI) problems. It can be seen as a partitioned FSI procedure and in this respect it generalizes the ideas introduced in [Badia, Nobile and Vergara, J. Comput. Phys. 227 (2008) 7027 –7051]. We analyze the convergence of GMRES iterations with the Robin-Robin preconditioner on a model problem and compare its efficiency with some existing algorithms. The method is shown to be very efficient for many challenging fluid-structure interaction problems, such as those characterized by a large added-mass effect or by enclosed fluids. In particular, the possibility to solve balloon-type problems without any special treatment makes this algorithm very appealing compared to the computationally intensive existing approaches.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robin-Robin preconditioned Krylov methods for fluid-structure interaction problems

In this work we propose a Robin-Robin preconditioner combined with Krylov iterations for the solution of the interface system arising in fluid-structure interaction (FSI) problems. It can be seen as a partitioned FSI procedure and in this respect it generalizes the ideas introduced in [Badia, Nobile and Vergara, J. Comput. Phys. 227 (2008) 7027 –7051]. We analyze the convergence of GMRES iterat...

متن کامل

Domain Decomposition Solvers for the Fluid-Structure Interaction Problems with Anisotropic Elasticity Models Powered by TCPDF (www.tcpdf.org) DOMAIN DECOMPOSITION SOLVERS FOR THE FLUID-STRUCTURE INTERACTION PROBLEMS WITH ANISOTROPIC ELASTICITY MODELS

In this work, a two-layer coupled fluid-structure-structure interaction model is considered, which incorporates an anisotropic structure model into the fluid-structure interaction problems. We propose two domain decomposition solvers for such a class of coupled problems: a Robin-Robin preconditioned GMRES solver combined with an inner Dirichlet-Neumann iterative solver, and a Robin-Robin precon...

متن کامل

Domain Decomposition Solvers for the Fluid-Structure Interaction Problems with Anisotropic Elasticity Models

In this work, a two-layer coupled fluid-structure-structure interaction model is considered, which incorporates an anisotropic structure model into the fluid-structure interaction problems. We propose two domain decomposition solvers for such a class of coupled problems: a Robin-Robin preconditioned GMRES solver combined with an inner Dirichlet-Neumann iterative solver, and a Robin-Robin precon...

متن کامل

A Collocation Method with Modified Equilibrium on Line Method for Imposition of Neumann and Robin Boundary Conditions in Acoustics (TECHNICAL NOTE)

A collocation method with the modified equilibrium on line method (ELM) forimposition of Neumann and Robin boundary conditions is presented for solving the two-dimensionalacoustical problems. In the modified ELM, the governing equations are integrated over the lines onthe Neumann (Robin) boundary instead of the Neumann (Robin) boundary condition equations. Inother words, integration domains are...

متن کامل

A Numerical Study on a Preconditioned GMRES Solver with Algebraic Multigrid Accelerations for the Fluid-Structure Interaction Problems on Hybrid Meshes

In this work, we propose a preconditioned GMRES solver for a Schur complement equation of the linearized fluid-structure interaction problem, with respect to the displacement unknowns only on the interface. The preconditioning for the Schur complement equation requires approximate solutions of the fluid and structure sub-problems with appropriate boundary conditions on the interface, in particu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008